China factory High Strength Aluminum Alloy Turbo Air Pump Turbo Vacuum Pump for Vacuum Lifting with Good quality

Product Description

High Strength Aluminum Alloy Turbo Air Pump Turbo Vacuum Pump for Vacuum Lifting

Model Stage/ Phase Frequency Power Voltage Current Airflow Vacuum Pressure Noise Weight
Hz KW V A m3/h mbar mbar db KG
2MV 520-H57 Double/Three 50 4 345-415△/600-720Y 8.05△/4.65Y 230 -390 490 72 44
60 4.6 380-480 △/660-720Y 9.26△/5.35Y 275 -410 480 74

Technical Parama

model motor          
  rated weight pakcing size max flow vacuum pressure
Frequency power voltage current   L*B*H      
HZ KW V A KG CM m³/h mbar mbar
2MV510-H06 50 0.85 200-240 △/345-415Y 4.0△/2.3Y 20   210 -110 100
60 0.95 220-275△//380-480Y 4.2△/2.3Y   255 -80 70
2MV 510-H16 50 1.3 200-240 △/345-415Y 6.6△/3.8Y 22   210 -170 170
60 1.5 220-275△//380-480Y 6.9△/4.0Y   255 -150 140
2MV 510-H26 50 1.6 200-240 △/345-415Y 6.24△/3.6Y 23 37*36*39.5 210 -200 190
60 2.05 220-275△//380-480Y 7.97△/4.6Y 255 -220 210
2MV 510-H36 50 2.2 200-240△/345-415Y 8.14 △/4.7Y 25 210 -220 270
60 2.55 220-275 △/380-480Y 9.21 △/5.32Y 255 -260 290
2MV 520-H36 50 2.2 200-240 △/345-415Y 8.14 △/4.7Y 40 53*46*53 230 -220 270
60 3.45 220-275△/380-480Y 9.21 △/5.32Y 275 -260 290
2MV 520-H46 50 3 200-240 △/345-415Y 10.46△/6.04Y 40 230 -340 410
60 3.45 220-275△/380-480Y 12.04 △/6.95Y 275 -380 360
2MV 520-H57 50 4 345-415△/600-720Y 8.05△/4.65Y 41 52.5*47*53 230 -390 440
60 4.6 380-480 △/660-720Y 9.26△/5.35Y 275 -410 480
2MV 590-H26 50 1.1 200-240 △/345-415Y 5.7△/3.3Y 23 210 -130 150
60 1.7 220-275△//380-480Y 6.0 △/3.5Y 255 -180 210
2MV 610-H06 50 1.6 200-240 △/345-415Y 6.24 △/3.6Y 25 40*38*41 265 -170 180
60 2.05 220-275△/380-480Y 7.97△/4.6Y 315 -180 190
2MV 610-H16 50 2.2 200-240 △/345-415Y 8.14 △/4.7Y 28 265 -235 220
60 2.55 220-275 △/380-480Y 9.21△/5.32Y 315 -245 230
2MV 610-H26 50 3 200-240 △/345-415Y 10.46 △/6.04Y 34 265 -280 280
60 3.45 220-275△/380-480Y 12.04 △/6.95Y 315 -260 270

Blower Functional Features:

 1. Light weight high pressure big volume low noise.

 2. Aluminum alloy material, greatly reduce weight, achieve the goal of lightweight.
 3. Design ( 1 HP motor for I . E. C above ) , full close outer fan type aluminum frame,
     motor axis of special design, can be suitable for long time use.
 4. Special blade design, high pressure, big air volume, low noise, long service life.
 5. Special air damper, air volume control stability is high, easy to operate (CX) TB) HTB applicable.
 

Performance curves and  Dimensions:

Accessories :

We also have some parts for your application, if you need, welcome to tell me.

Air filter: Filter the dust particles, apply to a bad environment.

Pressure relief valve: Control gas pressure, prevent excessive pressure, damage the machine.

Silencer: reduce blower noise 5-10db,  apply to a quiet environment.

Application:
1. Printing Machines
2. Burning Machines
3. Plastic Extruders, Laminating, Film Making Machines
4. Uniform Temperature Equipment
5. Household Machines
6. Dust Collectors
7. Textile Machines
8. Pollution Machines
9. Hot Air Blowers
10. Dryers Machines
11. Incinerators
12. Machinery for the Food and Beverage Industries
13. Machinery for Cooling
14. Woodworking Machines
15. Grain Elevators

Company Information

Certificates:

Packaging & Shipping

FAQ
1. What is the warranty of your machine?
R: 1 years, any product itself question,you can contact with us.

2. What is the material of your machine , is oil free?
R: our machine is aluminum alloy, motor is 100% copper coil ,  of course, we are oil free.

3. How to operate your machine?
R: Connect with wire, and turn on the power, so you can use it directly, about the wiring method, we will tell you how to do according to your voltage, so at first , you need to tell us your voltage and phase,its important.

4. You are trading company or manufacture?
R:  We are manufacture, we can provide long-term supply with fast speed.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 24 Hours Service Online
Warranty: 1 Year
Type: Aerators
Samples:
US$ 480/Piece
1 Piece(Min.Order)

|

Order Sample

1
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

vacuum pump

How Are Vacuum Pumps Employed in the Production of Electronic Components?

Vacuum pumps play a crucial role in the production of electronic components. Here’s a detailed explanation:

The production of electronic components often requires controlled environments with low or no atmospheric pressure. Vacuum pumps are employed in various stages of the production process to create and maintain these vacuum conditions. Here are some key ways in which vacuum pumps are used in the production of electronic components:

1. Deposition Processes: Vacuum pumps are extensively used in deposition processes, such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), which are commonly employed for thin film deposition on electronic components. These processes involve the deposition of materials onto substrates in a vacuum chamber. Vacuum pumps help create and maintain the necessary vacuum conditions required for precise and controlled deposition of the thin films.

2. Etching and Cleaning: Etching and cleaning processes are essential in the fabrication of electronic components. Vacuum pumps are used to create a vacuum environment in etching and cleaning chambers, where reactive gases or plasmas are employed to remove unwanted materials or residues from the surfaces of the components. The vacuum pumps help evacuate the chamber and ensure the efficient removal of byproducts and waste gases.

3. Drying and Bake-out: Vacuum pumps are utilized in the drying and bake-out processes of electronic components. After wet processes, such as cleaning or wet etching, components need to be dried thoroughly. Vacuum pumps help create a vacuum environment that facilitates the removal of moisture or solvents from the components, ensuring their dryness before subsequent processing steps. Additionally, vacuum bake-out is employed to remove moisture or other contaminants trapped within the components’ materials or structures, enhancing their reliability and performance.

4. Encapsulation and Packaging: Vacuum pumps are involved in the encapsulation and packaging stages of electronic component production. These processes often require the use of vacuum-sealed packaging to protect the components from environmental factors such as moisture, dust, or oxidation. Vacuum pumps assist in evacuating the packaging materials, creating a vacuum-sealed environment that helps maintain the integrity and longevity of the electronic components.

5. Testing and Quality Control: Vacuum pumps are utilized in testing and quality control processes for electronic components. Some types of testing, such as hermeticity testing, require the creation of a vacuum environment for evaluating the sealing integrity of electronic packages. Vacuum pumps help evacuate the testing chambers, ensuring accurate and reliable test results.

6. Soldering and Brazing: Vacuum pumps play a role in soldering and brazing processes for joining electronic components and assemblies. Vacuum soldering is a technique used to achieve high-quality solder joints by removing air and reducing the risk of voids, flux residuals, or oxidation. Vacuum pumps assist in evacuating the soldering chambers, creating the required vacuum conditions for precise and reliable soldering or brazing.

7. Surface Treatment: Vacuum pumps are employed in surface treatment processes for electronic components. These processes include plasma cleaning, surface activation, or surface modification techniques. Vacuum pumps help create the necessary vacuum environment where plasma or reactive gases are used to treat the component surfaces, improving adhesion, promoting bonding, or altering surface properties.

It’s important to note that different types of vacuum pumps may be used in electronic component production, depending on the specific process requirements. Commonly used vacuum pump technologies include rotary vane pumps, turbo pumps, cryogenic pumps, and dry pumps.

In summary, vacuum pumps are essential in the production of electronic components, facilitating deposition processes, etching and cleaning operations, drying and bake-out stages, encapsulation and packaging, testing and quality control, soldering and brazing, as well as surface treatment. They enable the creation and maintenance of controlled vacuum environments, ensuring precise and reliable manufacturing processes for electronic components.

vacuum pump

Can Vacuum Pumps Be Used for Chemical Distillation?

Yes, vacuum pumps are commonly used in chemical distillation processes. Here’s a detailed explanation:

Chemical distillation is a technique used to separate or purify components of a mixture based on their different boiling points. The process involves heating the mixture to evaporate the desired component and then condensing the vapor to collect the purified substance. Vacuum pumps play a crucial role in chemical distillation by creating a reduced pressure environment, which lowers the boiling points of the components and enables distillation at lower temperatures.

Here are some key aspects of using vacuum pumps in chemical distillation:

1. Reduced Pressure: By creating a vacuum or low-pressure environment in the distillation apparatus, vacuum pumps lower the pressure inside the system. This reduction in pressure lowers the boiling points of the components, allowing distillation to occur at temperatures lower than their normal boiling points. This is particularly useful for heat-sensitive or high-boiling-point compounds that would decompose or become thermally degraded at higher temperatures.

2. Increased Boiling Point Separation: Vacuum distillation increases the separation between the boiling points of the components, making it easier to achieve a higher degree of purification. In regular atmospheric distillation, the boiling points of some components may overlap, leading to less effective separation. By operating under vacuum, the boiling points of the components are further apart, improving the selectivity and efficiency of the distillation process.

3. Energy Efficiency: Vacuum distillation can be more energy-efficient compared to distillation under atmospheric conditions. The reduced pressure lowers the required temperature for distillation, resulting in reduced energy consumption and lower operating costs. This is particularly advantageous when dealing with large-scale distillation processes or when distilling heat-sensitive compounds that require careful temperature control.

4. Types of Vacuum Pumps: Different types of vacuum pumps can be used in chemical distillation depending on the specific requirements of the process. Some commonly used vacuum pump types include:

– Rotary Vane Pumps: Rotary vane pumps are widely used in chemical distillation due to their ability to achieve moderate vacuum levels and handle various gases. They work by using rotating vanes to create chambers that expand and contract, enabling the pumping of gas or vapor.

– Diaphragm Pumps: Diaphragm pumps are suitable for smaller-scale distillation processes. They use a flexible diaphragm that moves up and down to create a vacuum and compress the gas or vapor. Diaphragm pumps are often oil-free, making them suitable for applications where avoiding oil contamination is essential.

– Liquid Ring Pumps: Liquid ring pumps can handle more demanding distillation processes and corrosive gases. They rely on a rotating liquid ring to create a seal and compress the gas or vapor. Liquid ring pumps are commonly used in chemical and petrochemical industries.

– Dry Screw Pumps: Dry screw pumps are suitable for high-vacuum distillation processes. They use intermeshing screws to compress and transport gas or vapor. Dry screw pumps are known for their high pumping speeds, low noise levels, and oil-free operation.

Overall, vacuum pumps are integral to chemical distillation processes as they create the necessary reduced pressure environment that enables distillation at lower temperatures. By using vacuum pumps, it is possible to achieve better separation, improve energy efficiency, and handle heat-sensitive compounds effectively. The choice of vacuum pump depends on factors such as the required vacuum level, the scale of the distillation process, and the nature of the compounds being distilled.

vacuum pump

Can Vacuum Pumps Be Used in Food Processing?

Yes, vacuum pumps are widely used in food processing for various applications. Here’s a detailed explanation:

Vacuum pumps play a crucial role in the food processing industry by enabling the creation and maintenance of vacuum or low-pressure environments. They offer several benefits in terms of food preservation, packaging, and processing. Here are some common applications of vacuum pumps in food processing:

1. Vacuum Packaging: Vacuum pumps are extensively used in vacuum packaging processes. Vacuum packaging involves removing air from the packaging container to create a vacuum-sealed environment. This process helps extend the shelf life of food products by inhibiting the growth of spoilage-causing microorganisms and reducing oxidation. Vacuum pumps are used to evacuate the air from the packaging, ensuring a tight seal and maintaining the quality and freshness of the food.

2. Freeze Drying: Vacuum pumps are essential in freeze drying or lyophilization processes used in food processing. Freeze drying involves removing moisture from food products while they are frozen, preserving their texture, flavor, and nutritional content. Vacuum pumps create a low-pressure environment that allows frozen water to directly sublimate from solid to vapor, resulting in the removal of moisture from the food without causing damage or loss of quality.

3. Vacuum Cooling: Vacuum pumps are utilized in vacuum cooling processes for rapid and efficient cooling of food products. Vacuum cooling involves placing the food in a vacuum chamber and reducing the pressure. This lowers the boiling point of water, facilitating the rapid evaporation of moisture and heat from the food, thereby cooling it quickly. Vacuum cooling helps maintain the freshness, texture, and quality of delicate food items such as fruits, vegetables, and bakery products.

4. Vacuum Concentration: Vacuum pumps are employed in vacuum concentration processes in the food industry. Vacuum concentration involves removing excess moisture from liquid food products to increase their solids content. By creating a vacuum, the boiling point of the liquid is reduced, allowing for gentle evaporation of water while preserving the desired flavors, nutrients, and viscosity of the product. Vacuum concentration is commonly used in the production of juices, sauces, and concentrates.

5. Vacuum Mixing and Deaeration: Vacuum pumps are used in mixing and deaeration processes in food processing. In the production of certain food products such as chocolates, confectioneries, and sauces, vacuum mixing is employed to remove air bubbles, achieve homogeneity, and improve product texture. Vacuum pumps aid in the removal of entrapped air and gases, resulting in smooth and uniform food products.

6. Vacuum Filtration: Vacuum pumps are utilized in food processing for vacuum filtration applications. Vacuum filtration involves separating solids from liquids or gases using a filter medium. Vacuum pumps create suction that draws the liquid or gas through the filter, leaving behind the solid particles. Vacuum filtration is commonly used in processes such as clarifying liquids, removing impurities, and separating solids from liquids in the production of beverages, oils, and dairy products.

7. Marinating and Brining: Vacuum pumps are employed in marinating and brining processes in the food industry. By applying a vacuum to the marinating or brining container, the pressure is reduced, allowing the marinade or brine to penetrate the food more efficiently. Vacuum marinating and brining help enhance flavor absorption, reduce marinating time, and improve the overall taste and texture of the food.

8. Controlled Atmosphere Packaging: Vacuum pumps are used in controlled atmosphere packaging (CAP) systems in the food industry. CAP involves modifying the gas composition within food packaging to extend the shelf life and maintain the quality of perishable products. Vacuum pumps aid in the removal of oxygen or other unwanted gases from the package, allowing the introduction of a desired gas mixture that preserves the food’s freshness and inhibits microbial growth.

These are just a few examples of how vacuum pumps are used in food processing. The ability to create and control vacuum or low-pressure environments is a valuable asset in preserving food quality, enhancing shelf life, and facilitating various processing techniques in the food industry.

China factory High Strength Aluminum Alloy Turbo Air Pump Turbo Vacuum Pump for Vacuum Lifting   with Good quality China factory High Strength Aluminum Alloy Turbo Air Pump Turbo Vacuum Pump for Vacuum Lifting   with Good quality
editor by CX 2024-03-03

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *