China Best Sales Double-Suction Horizontal Vacuum Medium Consistency Pulp Pump vacuum pump adapter

Product Description

Paper Pulp Medium Consistency Pulp Pump

Company Profile

HUATAO OEM Kinds Of Centrifugal Processing Pulp Pump for Paper Machine to deliver the pulp and water.
And the Pulp Pumps as the key equipment during the pulp stock preparation.
Single-stage centrifugal pump with full-open impeller design.
Suitable for conveying slurry or clean water with a pulp concentration of 0-6%.
The scope has a pump, base frame for placing the pump, and standard motor, with screw coupling, coupling protection cover, and anchor bolts.

SGZ SK Type Centrifugal Pump

SGZ SK Centrifugal Pump 

SGZ SK Centrifugal Pump high-efficiency non-clogging non-leakage pulp pump is a new generation of pulp pump products.
It has obvious advantages such as high efficiency, good anti-clogging performance, no leakage during operation, and convenient installation and maintenance. It is widely used in the conveying of pulp media in paper and pulp enterprises.

Centrifugal Pump Structural features:
1. The pump has a rear door structure, and it is not necessary to disassemble the pipeline during maintenance.
2. The pressure design of the inlet and outlet flanges of the pump is 1.6MPa.
3. The impeller adopts a three-blade (or six-blade), open impeller, high efficiency and no need for axial thrust compensation, easy maintenance and low chance of blockage. The impeller adopts lost wax precision casting and is checked for dynamic balance.
4. The pump shaft is supported by a combination of oil-lubricated, heavy-duty, abrasion-resistant, imported cylindrical roller bearings and radial thrust ball bearings (angular contact ball bearings). Cylindrical roller bearings are mounted on the pump end and radial thrust ball bearings are mounted face to face on the rotating end
5. Shaft seals mainly include a pumping ring plus single-end mechanical seal, packing seal, single-end mechanical seal, tandem mechanical seal, double-end mechanical seal, combination seal of pumping ring and single-end mechanical seal, and dynamic seal. , the user can choose according to the requirements and actual working conditions
6. There are 4 kinds of materials: cast iron, cast steel, ordinary stainless steel, and duplex stainless steel.

Low Pulse Pulp Pump


Low Pulse Pulp Pump

SJ-type sizing pump, also known as a low-pulse pump, is designed for the disadvantages of large flow and low-lift mixed-flow pumps widely used in general papermaking enterprises, such as unstable pulp and inconvenient disassembly and assembly. It is an ideal replacement product, with high efficiency, stable pulp, long service life, and easy maintenance (the bearing is balanced at both ends of the pump body). (The pump casing is opened in the middle, and maintenance can be done after opening the cover.) It is suitable for matching the pulp supply system of medium and high-speed paper machines. The operating temperature is below 80 °C and the concentration is below 1%.

The pump looks from the coupling to the pump, the pump rotates counterclockwise, the slurry inlet of the pump is on the right, and the slurry outlet is on the left. If you need to change the position of the slurry inlet and outlet, you need to submit it in advance and confirm with the drawing.

Water Ring Vacuum Pump

Watering Ring Vacuum Pump 

The water ring vacuum pump (referred to as a water ring pump) is a rough vacuum pump, the ultimate vacuum it can obtain is 2000~4000Pa, and the vacuum degree of the unit formed with the vacuum pump can reach 1~600Pa. The water ring pump can also be used as a compressor, which is called a water ring compressor, which is a low-pressure compressor with a pressure range of 1~2×10^5 Pa gauge pressure.

The water ring vacuum pump is equipped with an eccentric rotor with fixed blades, which throws water (liquid) to the stator wall, and the water (liquid) forms a liquid ring concentric with the stator, and the liquid ring and the rotor blades together form a variable volume. The positive displacement vacuum pump. In many processes of industrial production, such as vacuum filtration, vacuum water diversion, vacuum feeding, vacuum evaporation, vacuum concentration, vacuum resuspension, and vacuum degassing, water ring pumps are widely used. Mainly used in a coal mine (gas pumping), chemical, pharmaceutical, mining, paper, food, beer, building materials, plastics, metallurgy, electrical appliances, and other industries.

Water ring vacuum pump advantage:
1. The structure is simple, the manufacturing precision is not high, and it is easy to process.
2. The structure is compact, the speed of the pump is high, and it can generally be directly connected with the motor, without the need for a deceleration device. Therefore, with a small structure size, a large exhaust volume can be obtained, and the floor space is also small.
3. The compressed gas is basically isothermal, that is, the temperature change of the compressed gas is small.
4. Since there is no metal friction surface in the pump cavity, there is no need to lubricate the pump, and the wear is very small. The sealing between the rotating part and the fixed part can be done directly by the water seal.
5. The suction is uniform, the work is stable and reliable, the operation is simple, and the maintenance is convenient.

Double Flow Centrifugal Pump

Double Flow Centrifugal Pump

S-type and SH-type centrifugal pumps are single-stage double-suction, horizontal split centrifugal pumps, which are used to transport clean water and liquids with similar physical and chemical properties to water. The maximum temperature of the liquid does not exceed 80 ºC, which is suitable for paper mills, mines, cities, power station water supply, and drainage, farmland irrigation and drainage, and various water conservancy projects.

Model S centrifugal pumps look towards the pump from the coupling and the pump rotates clockwise. The water inlet of the pump is on the right and the water outlet is on the left. If you need to change the position of the import and export, you need to explain it before production.
SH type centrifugal pump looks at the pump from the coupling, and the water pump rotates counterclockwise. The water inlet of the pump is on the left and the water outlet is on the right. If you need to change the position of the import and export, you need to explain it before production.

The bearings of the centrifugal pump are located at both ends of the pump body, and the force is balanced during operation and has a long service life. The pump body is open in the middle, and it can be repaired by opening the cover, which is very convenient.

Slurry Pump

Slurry Pump, Middle Consistency Slurry Pump

Double-channel non-clogging pulp pump is a new type of energy-saving pulp pump. After practical use, it has the advantages of high efficiency, no leakage or less leakage, good anti-clogging performance, stable operation, high reliability, compact structure, and long service life. This series of pumps has been innovated and improved according to the characteristics of papermaking and pulping processes and has achieved the best application of fluid engineering and fluid mechanics.

The semi-open or fully open impeller is adopted, the front clearance between the wear plate and the impeller is adjustable, the shaft seal is mainly mechanical seal, and high-precision bearings (D-grade accuracy), and high-quality shaft materials are selected.
It can be widely used in light industry, papermaking and other industries where the temperature is lower than 110ºC and the concentration is lower than 6%. It can also be used in industrial and urban water supply, drainage, and other occasions. Special specifications can be designed individually.



Our Advantages

1. Fully open, three-blade impeller, large flow channel, strong performance without clogging.
2. Wear-resistant linings at the suction and discharge ends of the impeller are used to protect the eddy current casing.
3. The new protective cover design makes it easier to disassemble.
4. Brand new chassis design, stronger and more convenient for coupling adjustment.

Our Professional Team






/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Supply Accessories, Video Instruction
Warranty: 12 Months
Working Pressure: High Pressure Pump
Influent Type of Impeller: Double-Suction Pump
Position of Pump Shaft: Horizontal Pump
Pump Casing Combined: Horizontal Split Pumps


vacuum pump

Can Vacuum Pumps Be Used in the Aerospace Sector?

Vacuum pumps indeed have various applications in the aerospace sector. Here’s a detailed explanation:

Vacuum pumps play a crucial role in several areas of the aerospace industry, supporting various processes and systems. Some of the key applications of vacuum pumps in the aerospace sector include:

1. Space Simulation Chambers: Vacuum pumps are used in space simulation chambers to replicate the low-pressure conditions experienced in outer space. These chambers are utilized for testing and validating the performance and functionality of aerospace components and systems under simulated space conditions. Vacuum pumps create and maintain the necessary vacuum environment within these chambers, allowing engineers and scientists to evaluate the behavior and response of aerospace equipment in space-like conditions.

2. Propellant Management: In space propulsion systems, vacuum pumps are employed for propellant management. They help in the transfer, circulation, and pressurization of propellants, such as liquid rocket fuels or cryogenic fluids, in both launch vehicles and spacecraft. Vacuum pumps assist in creating the required pressure differentials for propellant flow and control, ensuring efficient and reliable operation of propulsion systems.

3. Environmental Control Systems: Vacuum pumps are utilized in the environmental control systems of aircraft and spacecraft. These systems are responsible for maintaining the desired atmospheric conditions, including temperature, humidity, and cabin pressure, to ensure the comfort, safety, and well-being of crew members and passengers. Vacuum pumps are used to regulate and control the cabin pressure, facilitating the circulation of fresh air and maintaining the desired air quality within the aircraft or spacecraft.

4. Satellite Technology: Vacuum pumps find numerous applications in satellite technology. They are used in the fabrication and testing of satellite components, such as sensors, detectors, and electronic devices. Vacuum pumps help create the necessary vacuum conditions for thin film deposition, surface treatment, and testing processes, ensuring the performance and reliability of satellite equipment. Additionally, vacuum pumps are employed in satellite propulsion systems to manage propellants and provide thrust for orbital maneuvers.

5. Avionics and Instrumentation: Vacuum pumps are involved in the production and testing of avionics and instrumentation systems used in aerospace applications. They facilitate processes such as thin film deposition, vacuum encapsulation, and vacuum drying, ensuring the integrity and functionality of electronic components and circuitry. Vacuum pumps are also utilized in vacuum leak testing, where they help create a vacuum environment to detect and locate any leaks in aerospace systems and components.

6. High Altitude Testing: Vacuum pumps are used in high altitude testing facilities to simulate the low-pressure conditions encountered at high altitudes. These testing facilities are employed for evaluating the performance and functionality of aerospace equipment, such as engines, materials, and structures, under simulated high altitude conditions. Vacuum pumps create and control the required low-pressure environment, allowing engineers and researchers to assess the behavior and response of aerospace systems in high altitude scenarios.

7. Rocket Engine Testing: Vacuum pumps are crucial in rocket engine testing facilities. They are utilized to evacuate and maintain the vacuum conditions in engine test chambers or nozzles during rocket engine testing. By creating a vacuum environment, these pumps simulate the conditions experienced by rocket engines in the vacuum of space, enabling accurate testing and evaluation of engine performance, thrust levels, and efficiency.

It’s important to note that aerospace applications often require specialized vacuum pumps capable of meeting stringent requirements, such as high reliability, low outgassing, compatibility with propellants or cryogenic fluids, and resistance to extreme temperatures and pressures.

In summary, vacuum pumps are extensively used in the aerospace sector for a wide range of applications, including space simulation chambers, propellant management, environmental control systems, satellite technology, avionics and instrumentation, high altitude testing, and rocket engine testing. They contribute to the development, testing, and operation of aerospace equipment, ensuring optimal performance, reliability, and safety.

vacuum pump

How Do Vacuum Pumps Assist in Freeze-Drying Processes?

Freeze-drying, also known as lyophilization, is a dehydration technique used in various industries, including pharmaceutical manufacturing. Vacuum pumps play a crucial role in facilitating freeze-drying processes. Here’s a detailed explanation:

During freeze-drying, vacuum pumps assist in the removal of water or solvents from pharmaceutical products while preserving their structure and integrity. The freeze-drying process involves three main stages: freezing, primary drying (sublimation), and secondary drying (desorption).

1. Freezing: In the first stage, the pharmaceutical product is frozen to a solid state. Freezing is typically achieved by lowering the temperature of the product below its freezing point. The frozen product is then placed in a vacuum chamber.

2. Primary Drying (Sublimation): Once the product is frozen, the vacuum pump creates a low-pressure environment within the chamber. By reducing the pressure, the boiling point of water or solvents present in the frozen product is lowered, allowing them to transition directly from the solid phase to the vapor phase through a process called sublimation. Sublimation bypasses the liquid phase, preventing potential damage to the product’s structure.

The vacuum pump maintains a low-pressure environment by continuously removing the water vapor or solvent vapor generated during sublimation. The vapor is drawn out of the chamber, leaving behind the freeze-dried product. This process preserves the product’s original form, texture, and biological activity.

3. Secondary Drying (Desorption): After the majority of the water or solvents have been removed through sublimation, the freeze-dried product may still contain residual moisture or solvents. In the secondary drying stage, the vacuum pump continues to apply vacuum to the chamber, but at a higher temperature. The purpose of this stage is to remove the remaining moisture or solvents through evaporation.

The vacuum pump maintains the low-pressure environment, allowing the residual moisture or solvents to evaporate at a lower temperature than under atmospheric pressure. This prevents potential thermal degradation of the product. Secondary drying further enhances the stability and shelf life of the freeze-dried pharmaceutical product.

By creating and maintaining a low-pressure environment, vacuum pumps enable efficient and controlled sublimation and desorption during the freeze-drying process. They facilitate the removal of water or solvents while minimizing the potential damage to the product’s structure and preserving its quality. Vacuum pumps also contribute to the overall speed and efficiency of the freeze-drying process by continuously removing the vapor generated during sublimation and evaporation. The precise control provided by vacuum pumps ensures the production of stable and high-quality freeze-dried pharmaceutical products.

vacuum pump

Are There Different Types of Vacuum Pumps Available?

Yes, there are various types of vacuum pumps available, each designed to suit specific applications and operating principles. Here’s a detailed explanation:

Vacuum pumps are classified based on their operating principles, mechanisms, and the type of vacuum they can generate. Some common types of vacuum pumps include:

1. Rotary Vane Vacuum Pumps:

– Description: Rotary vane pumps are positive displacement pumps that use rotating vanes to create a vacuum. The vanes slide in and out of slots in the pump rotor, trapping and compressing gas to create suction and generate a vacuum.

– Applications: Rotary vane vacuum pumps are widely used in applications requiring moderate vacuum levels, such as laboratory vacuum systems, packaging, refrigeration, and air conditioning.

2. Diaphragm Vacuum Pumps:

– Description: Diaphragm pumps use a flexible diaphragm that moves up and down to create a vacuum. The diaphragm separates the vacuum chamber from the driving mechanism, preventing contamination and oil-free operation.

– Applications: Diaphragm vacuum pumps are commonly used in laboratories, medical equipment, analysis instruments, and applications where oil-free or chemical-resistant vacuum is required.

3. Scroll Vacuum Pumps:

– Description: Scroll pumps have two spiral-shaped scrolls—one fixed and one orbiting—which create a series of moving crescent-shaped gas pockets. As the scrolls move, gas is continuously trapped and compressed, resulting in a vacuum.

– Applications: Scroll vacuum pumps are suitable for applications requiring a clean and dry vacuum, such as analytical instruments, vacuum drying, and vacuum coating.

4. Piston Vacuum Pumps:

– Description: Piston pumps use reciprocating pistons to create a vacuum by compressing gas and then releasing it through valves. They can achieve high vacuum levels but may require lubrication.

– Applications: Piston vacuum pumps are used in applications requiring high vacuum levels, such as vacuum furnaces, freeze drying, and semiconductor manufacturing.

5. Turbo Molecular Vacuum Pumps:

– Description: Turbo pumps use high-speed rotating blades or impellers to create a molecular flow, continuously pumping gas molecules out of the system. They typically require a backing pump to operate.

– Applications: Turbo molecular pumps are used in high vacuum applications, such as semiconductor fabrication, research laboratories, and mass spectrometry.

6. Diffusion Vacuum Pumps:

– Description: Diffusion pumps rely on the diffusion of gas molecules and their subsequent removal by a high-speed jet of vapor. They operate at high vacuum levels and require a backing pump.

– Applications: Diffusion pumps are commonly used in applications requiring high vacuum levels, such as vacuum metallurgy, space simulation chambers, and particle accelerators.

7. Cryogenic Vacuum Pumps:

– Description: Cryogenic pumps use extremely low temperatures to condense and capture gas molecules, creating a vacuum. They rely on cryogenic fluids, such as liquid nitrogen or helium, for operation.

– Applications: Cryogenic vacuum pumps are used in ultra-high vacuum applications, such as particle physics research, material science, and fusion reactors.

These are just a few examples of the different types of vacuum pumps available. Each type has its advantages, limitations, and suitability for specific applications. The choice of vacuum pump depends on factors like required vacuum level, gas compatibility, reliability, cost, and the specific needs of the application.

China Best Sales Double-Suction Horizontal Vacuum Medium Consistency Pulp Pump   vacuum pump adapter	China Best Sales Double-Suction Horizontal Vacuum Medium Consistency Pulp Pump   vacuum pump adapter
editor by Dream 2024-05-07





Leave a Reply

Your email address will not be published. Required fields are marked *